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In an article published in this journal early last year, Koper
and Reiss1 introduced a volume scale that allows the partition
function within the isothermal-isobaric ensemble (pressure,
temperature, and particle number are held fixed) to be repre-
sented by a dimensionless integral. The need to introduce a
volume or length scale arises because the relevant partition
function involves a sum over a set of unspecified system
volumes. Replacing the sum by an integral to includeall
Volumesresults in a partition function that is not dimensionless
but has the dimensions of volume. In the thermodynamic limit,
the sum over discrete unspecified volumes yields a completely
negligible error,2 in essence because only the maximum term
in the sum was important. However, as emphasis has turned
to the theory of small systems (e.g., clusters3 and microemul-
sions4), there is an obvious need to include all the terms and
obtain the correct partition function as an integral over volume.
For a system composed ofN particles, maintained at a

temperatureT, and subject to a constant external pressurep,
Koper and Reiss showed that the partition function∆, if
evaluated over a continuous set of system volumes, is

where

provides the appropriate length scale of inverse volume such
that ∆ is dimensionless. Note thatp′′ is the pressure of the
system at volumeV. (Koper and Reiss correctly state that the
meaning ofp′′ in eq 2 is not necessarily that of apressuresince
for a small system there are usually additional independent
thermodynamic variables (e.g., surface area, curvature, etc.) that
need to be considered. However, it is convenient to refer top′′
as a pressure even though it denotes a specific volume derivative
of Q.) In the above equations,Q(N,V,T) is the canonical
ensemble partition function for a system containingN particles
in a volumeV at the given temperatureT, whilek is Boltzmann’s
constant. Equation 1 was derived by eliminating all redundant
microstates that had the same volume. Koper and Reiss found
that (eq 4.20 in their paper)

whereG is the Gibbs energy andkT ln T is negligible in the

thermodynamic limit. However, this result is inconsistent with
their eq 4.9 in which

Ωt is the total hypervolume available to an isolated system
composed ofNt particles at a fixed volumeVt and energyUt.
The system is divided into two parts: the subsystem of interest
(not necessarily macroscopic) and a bath of macroscopic size.
The external bath imposes a constant temperatureT and pressure
p on the subsystem. The subsystem is described byU, V, and
N while the bath is described byU0, V0 andN0. An overbar
above a variable denotes the average (equilibrium) value. If
we take the logarithm of both sides of eq 4, we find that

where we define5

Since the entropy is additive, we note that the total entropy of
the isolated system must be equal to the sum of the individual
entropies of the bath and subsystem (St ) S+ S0). Therefore,
if we let

we find that5

Note that Ĝ is not equivalent to the Gibbs energy of the
subsystem, as Koper and Reiss suggest in eq 3, but can be
thought of as a modified Gibbs energy due to the appearance
of p (and not the internal pressure) in eq 7. Koper and Reiss
obtained eq 3 by ignoring the temperature dependence ofp′′ in
their eq 4.13.6 Equation 8 is applicable to a system of any size
and is consistent with previous formulations2 for systems in the
thermodynamic limit. Koper and Reiss showed thatp′′ ) p
for a macroscopic system (eq 6.5 in their paper) and, in this
limit only, doesĜ necessarily equal the Gibbs energyG of the
subsystem.
We can now determine what thermodynamic variables are

related to the derivatives ofĜ. For a system in which a constant
external pressurep is imposed, we note that the differential
change in the internal energyUh is equal to5

where-p dVh is the work performed by the system against the
fixed external pressurep andµ is the chemical potential. Using
eqs 7 and 9, one can show that
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The above relations are identical to earlier results obtained for
both small5 and macroscopic2 systems.
The effect of using the required volume scale can be

demonstrated by analyzing a system composed of ideal gas
particles. In three dimensions, the canonical ensemble partition
function is given by7

Noting thatp′′/kT ) N/V (eq 2) we find upon using eq 1 that

and therefore

From eq 11 we find thatVh ) NkT/p. If one neglects to use the
volume scale in eq 1, then one obtains∆ ) (kT/pΛ3)N+1 andVh
) (N + 1)kT/p, a difference that is significant when dealing
with a finite system.
We can determine the average pressure,p′′, of the ideal gas

from

One finds that

showing that an ideal gas exhibits system size effects. The
above equation was obtained by Koper and Reiss (eq 6.6 in
their paper), by extending, in approximation, the maximum term
method to a system not of macroscopic size. However, the
approximation proved to be adequate in that eq 17 is exact and
is valid for all system sizes. As expected,p′′ ) p in the
thermodynamic limit (N f ∞). We also find that eq 15 yields
the following result

Nevertheless, the equivalence ofµ and Ĝ/N should not be
expected to hold, in general, for small systems.
The effect of system size can be further demonstrated if we

obtain∆ for the one-dimensional hard rod fluid. If we haveN
hard rods of diameterσ within a length (volume)L, the
canonical ensemble partition function is8

One can therefore show that

and

We also notice from eq 20 that

where we have assumed that the discrete variableN is large
enough to justify its use as a differential. This difference, of
course, becomes negligible in the thermodynamic limit.
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