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COMMENTS

Comment on “Length Scale for the Constant thermodynamic limit. However, this result is inconsistent with
Pressure Ensemble: Application to Small their eq 4.9 in which
Systems and Relation to Einstein Fluctuation — - _
Tzeory" _ U+ pV+ T U Vo No)
Q,=Aex T 4)
David S. Corti _ _ _
Q; is the total hypervolume available to an isolated system
Department of Chemistry and Biochemistry, bbsity of composed of\; particles at a fixed volum¥; and energyJ.
California, Los Angeles, Los Angeles, California 90095 The system is divided into two parts: the subsystem of interest
) (not necessarily macroscopic) and a bath of macroscopic size.
Receied: May 30, 1997 The external bath imposes a constant temperdtarel pressure

In an article published in this journal early last year, Koper P on the subsystem. The subsystem is described,by, and
and Reiskintroduced a volume scale that allows the partition N while the bath is described Byo, Vo andNo. An overbar
function within the isothermatisobaric ensemble (pressure, above a variable denotes the average (equilibrium) value. If
temperature, and particle number are held fixed) to be repre-we take the logarithm of both sides of eq 4, we find that
sented by a dimensionless integral. The need to introduce a _ B R
volume or length scale arises because the relevant partition | - :§: nA +£+Q/+§): nA +ﬂ+§> 5)
function involves a sum over a set of unspecified system L ¢ kT kT k kT  k
volumes. Replacing the sum by an integral to incladke
volumesresults in a partition function that is not dimensionless where we define
but has the dimensions of volume. In the thermodynamic limit, . _
the sum over discrete unspecified volumes yields a completely H=U+pV (6)
negligible errof in essence because only the maximum term . .
in the sum was important. However, as emphasis has turneds'n‘?e the entropy is additive, we note that the total entropy of
to the theory of small systems (e.g., clusterad microemul- the |so_Iated system must be equal to the sum of the individual
siong), there is an obvious need to include all the terms and E€Ntropies of the bath and subsystefn< S+ &). Therefore,

obtain the correct partition function as an integral over volume. 'f We let

For a system composed & particles, maintained at a A VIO
temperaturel, and subject to a constant external presqyre G=U+pV-TS=H-TS @
Koper and Reiss showed that the partition functian if we find that
evaluated over a continuous set of system volumes, is
G = —kTIn A(N,p,T) (8)

A= [, P QNVT)E T av (1) N | |

Note thatG is not equivalent to the Gibbs energy of the
subsystem, as Koper and Reiss suggest in eq 3, but can be
thought of as a modified Gibbs energy due to the appearance
p'_(3InQ of p (and not the internal pressure) in eq 7. Koper and Reiss
KT (3—V)NT (2) obtained eq 3 by ignoring the temperature dependenpg iof

their eq 4.13 Equation 8 is applicable to a system of any size

provides the appropriate |ength scale of inverse volume such and is consistent with previous formulatidriisr systems in the
that A is dimensionless. Note that' is the pressure of the  thermodynamic limit. Koper and Reiss showed that= p
system at volum&/. (Koper and Reiss correctly state that the for a macroscopic system (eq 6.5 in their paper) and, in this
meaning ofp”" in eq 2 is not necessarily that ofaessuresince limit only, doesG necessarily equal the Gibbs enex@yf the
for a small system there are usually additional independent Subsystem.
thermodynamic variables (e.g., surface area, curvature, etc.) that We can now determine what thermodynamic variables are
need to be considered. However, it is convenient to refefto  related to the derivatives @. For a system in which a constant
as a pressure even though it denotes a specific volume derivativeexternal pressure is imposed, we note that the differential
of Q) In the above equation®Q(N,V,T) is the canonical ~ change in the internal energy is equal t8
ensemble partition function for a system containigarticles _ _
in a volumeV at the given temperatui while k is Boltzmann’s dU=TdS—pdV+udN 9)
constant. Equation 1 was derived by eliminating all redundant
microstates that had the same volume. Koper and Reiss foun
that (eq 4.20 in their paper)

where

here—p dV is the work performed by the system against the
fixed external pressungandu is the chemical potential. Using
egs 7 and 9, one can show that

G=-—KTInT—kTInA 3) R
(@) ——s (10)
whereG is the Gibbs energy ankiT In T is negligible in the oT/pN

S1089-5639(97)01754-4 CCC: $15.00 © 1998 American Chemical Society
Published on Web 01/01/1998



Comments J. Phys. Chem. A, Vol. 102, No. 1, 199807

aé) N A _G

= =V 11 = pA-_ %

( op) 11) u=KTinE= =3 (18)
(@) =y (12) Nevertheless, the equivalence @fand G/N should not be
oN/Tp expected to hold, in general, for small systems.

The effect of system size can be further demonstrated if we
The above relations are identical to earlier results obtained for ghtain A for the one-dimensional hard rod fluid. If we hahe

both smaft and macroscopfcsystems. hard rods of diameter within a length (volume)L, the
The effect of using the required volume scale can be canonical ensemble partition functior§ is
demonstrated by analyzing a system composed of ideal gas

particles. In three dimensions, the canonical ensemble partition [L—(N- 2o
function is given by QNLT) =—F— (19)
A'N!
Q(NV,T) = VVYNIASN (13) One can therefore show that

Noting thatp/kT = N/V (eq 2) we find upon using eq 1 that G = —KkTIn A(N,p,T) = p(N — 1)o + NKTIn(pA/kT) (20)

A = (KTIpAY" 14y o
Si__ P
and therefore P =171N (21)
G= NkTIn(pA3/k1') (15) We also notice from eq 20 that
From eq 11 we find tha? = NkT/p. If one neglects to use the G _G_ _G_po (22)
- ; y Nt N “"N°N
volume scale in eq 1, then one obtaihs= (KT/pA3)NT1 andV Tp

= (N + 1)kT/p, a difference that is significant when dealing
with a finite system. o

We can determine the average presspteof the ideal gas
from

where we have assumed that the discrete varibbig large
enough to justify its use as a differential. This difference, of
course, becomes negligible in the thermodynamic limit.
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